
D7.1: Strategic Development Plan, Architectural Planning

 1

Europeana – Core Service Platform

DELIVERABLE

D7.1: Strategic Development Plan, Architectural Planning

Revision Final
Date of submission 30 October 2015

Author(s) Marcin Werla, PSNC
Pavel Kats, Europeana Foundation

Dissemination Level Public

D7.1: Strategic Development Plan, Architectural Planning

 2

REVISION HISTORY AND STATEMENT OF ORIGINALITY

Revision History

Revision
No. Date Author Organisation Description

1 1 August
2015 Marcin Werla PSNC Initial version

2
14
September
2015

Pavel Kats Europeana
Foundation Revision of initial version

3
30
September
2015

Marcin Werla PSNC Revision

4 30 October
2015

Pavel Kats, Marcin
Werla

PSNC, Europeana
Foundation Final version

Statement of originality:
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both.

The sole responsibility of this publication lies with the author. The European Union is not
responsible for any use that may be made of the information contained therein.

Europeana DSI is co-financed by the European Union's Connecting Europe Facility

D7.1: Strategic Development Plan, Architectural Planning

 3

1. Introduction
Europeana is the central access point to tens of millions of records from cultural heritage
institutions from all over Europe. The amount of data which is processed, and the amount of
sources of this data and finally the heterogeneity of data introduces a number of conceptual and
technological challenges which have to be faced using most modern IT solutions. In its
operational history technical environment of Europeana had several ups and downs, starting with
the overloading of the server which took place just after the official opening of the portal, when
the news started to be transmitted be the media. The infrastructure of Europeana is now of
course much more advanced and almost incomparable to its initial state from 2008, but the
continuous growth of content and interest, new features like faceted search, enrichments,
Europeana API and Content Reuse Framework, all the time create new challenges which have to
be overcome by technical part of the Europeana team. In such expected and unexpected
situations, the key to proper and fast solution is very often dependent on the architecture. Good
architecture can save the operational capacity of the portal or ingestion backend, but even small
architecture flaws can lead to bottlenecks and small failures which escalate to big disasters.

In order to make sure that the future of technical operations of Europeana is safe and stable, as a
part of technical development work in WP7 of Europeana DSI project, architectural planning was
made and documented in this deliverable. It starts with the overview of current Europeana
architecture in section 2. Next section starts with a brief description of key elements of Europeana
Cloud services infrastructure, as it is key environment for the future technical operations of
Europeana. It is followed by detailed description of four directions of architectural development
which are at the moment seen as the most important. The deliverable ends with a summary
which explains how these four directions can be joined in the future to make Europeana systems
ready for development of new features and processing of much bigger amounts of data.

The development of Europeana systems is continuous and complex activity and takes into
account many factors, including the general development of IT tools and services as well as
results of many Europeana-related projects. Therefore, architectural planning presented in this
document may become outdated even before all plans described in this document are
implemented. To reflect the current state of architectural planning this deliverable may be update
throughout the project lifetime and released as subsequent versions.

D7.1: Strategic Development Plan, Architectural Planning

 4

2. Current architecture overview
Good overview of the current architecture of Europeana systems can be found in “D5.2. Review
of Europeana’s logical and technical architectures”1 released in May 2015 under Europeana v.3
project. The Figure 1 below, coming from this deliverable, shows schematic overview of
Europeana architecture.

Figure 1. Overview of Europeana architecture [source: Europeana v.3 - D2.5].

The current environment is divided into ingestion backend and production frontend. Key
components of ingestion backend include:

• Harvesting subsystem based in REPOX
• Mapping subsystem based in MINT
• Workflow management subsystem based in UIM, connected with SugarCRM data

providers’ information management
• Media harvesting and analysis subsystem

The above subsystems are responsible for providing Europeana staff with functionality needed to
aggregate data from Data Partners, map the data to format proper for further processing, run
processing and enrichment workflows and finally store the data in a number of output
components:

• Search storage (for indexing and searching data) – based on Solr
• Object storage (for storing and exposing data) – based on MongoDB
• Graph storage (for storing and exploring relations) – based on Neo4j
• Technical metadata storage (for storing media harvester data) – based on MongoDB

1
http://pro.europeana.eu/files/Europeana_Professional/Projects/Project_list/Europeana_Version3/Deliverables/Ev3%20
D5_2%20Review%20Logical%20and%20Technical%20Architectures.pdf

http://pro.europeana.eu/files/Europeana_Professional/Projects/Project_list/Europeana_Version3/Deliverables/Ev3%20D5_2%20Review%20Logical%20and%20Technical%20Architectures.pdf
http://pro.europeana.eu/files/Europeana_Professional/Projects/Project_list/Europeana_Version3/Deliverables/Ev3%20D5_2%20Review%20Logical%20and%20Technical%20Architectures.pdf

D7.1: Strategic Development Plan, Architectural Planning

 5

Above three storage components are used to validate the aggregated and processed data before
it can go live in the production frontend. An internal replica of Europeana portal and API endpoint
are used for that.

After the validation is done and data is accepted for publishing, the synchronization process is
started. This process, as described in D5.2, was done manually by file-level synchronization of
storage components from ingestion to production environments, which required temporary
switching off of the synchronized components. To minimize downtime, all storage components in
the production environment were replicated so that at least one of them is running when others
are synchronized offline.

In 2015 Europeana team took steps to change the synchronization approach from off-line to on-
line synchronization. The work is currently (October 2015) being finished and the architecture
looks as depicted on Figure 2 below. Main changes are the following:

• UIM workflow management subsystem, extended with dedicated applications took over
the task of synchronization of data between backend and frontend systems and does this
in an automated way.

• All three storage components (search, object, graph) were reconfigured from
“independent replicas + load balancer” approach to proper clustered solutions (Solr Cloud,
MongoDB master/slave, Neo4j HA). This allows the modification of production data
without the necessity of shutting down of components that are being synchronized.

The new architecture decreases the amount of work that has to be done in order to publish
new/updated data. It also increases the availability and robustness of the entire production
environment.

Figure 2. Europeana architecture with the new synchronization approach.

Regarding the further development of Europeana architecture, it should be focused on
addressing the following issues:

D7.1: Strategic Development Plan, Architectural Planning

 6

• Lack of integration with EuropeanaCloud.
• Complex ingestion system which consists of four different applications (Repox, MINT,

UIM, SugarCRM) with independent storages.
• Media harvesting subsystem very loosely connected with the rest of system.
• Lack of shared messaging queue/bus for future integrations.
• Lack of centralized logging and auditing facilities.

Architectural planning presented in the following section takes the newest Europeana architecture
and provides directions for its development, in the context of issues described above.

D7.1: Strategic Development Plan, Architectural Planning

 7

3. Architectural planning
The main direction of architectural changes in Europeana infrastructure should be gradual
migration towards the usage of Europeana Cloud infrastructure (see deliverables of Europeana
Cloud project: D2.2. Europeana Cloud Architectural Design2 and D2.4. Prototype of Content
Cloud3), which is designed and developed to be a shared backend infrastructure of European
aggregators, including Europeana itself. As depicted on Figure 3 below, Europeana Cloud system
provides a number of services which offer following capabilities:

• Registration and resolution of unique identifiers
• Metadata and content storage and access
• Flexible data processing with good scaling capabilities
• Notification about data changes (currently under implementation)
• Data annotations (currently under implementation)

Figure 3. Europeana Cloud architecture (source: Europeana Cloud D2.4).

From the point of view of present Europeana architecture, Europeana Cloud can provide first of
all shared data storage and data processing components. This functionality, adopted gradually,
can be very useful to address other issues listed at the end of the previous section. In order to do
that, the several directions of architectural developments are proposed below.

2
http://pro.europeana.eu/files/Europeana_Professional/Projects/Project_list/Europeana_Cloud/Deliverables/D2.2%20E
uropeana%20Cloud%20Architectural%20Design.pdf
3
http://pro.europeana.eu/files/Europeana_Professional/Projects/Project_list/Europeana_Cloud/Deliverables/D2.4D2.5P
rototypeofMetadataandContentCloud.pdf

http://pro.europeana.eu/files/Europeana_Professional/Projects/Project_list/Europeana_Cloud/Deliverables/D2.2%20Europeana%20Cloud%20Architectural%20Design.pdf
http://pro.europeana.eu/files/Europeana_Professional/Projects/Project_list/Europeana_Cloud/Deliverables/D2.2%20Europeana%20Cloud%20Architectural%20Design.pdf
http://pro.europeana.eu/files/Europeana_Professional/Projects/Project_list/Europeana_Cloud/Deliverables/D2.4D2.5PrototypeofMetadataandContentCloud.pdf
http://pro.europeana.eu/files/Europeana_Professional/Projects/Project_list/Europeana_Cloud/Deliverables/D2.4D2.5PrototypeofMetadataandContentCloud.pdf

D7.1: Strategic Development Plan, Architectural Planning

 8

Direction 1: Reconstruction of complex ingestion system

Current ingestion system of Europeana is composed of several tools which were
developed and somehow integrated on the previous stages of development of Europeana
system. These tools have sometimes partially overlapping functionality (e.g. both MINT
and REPOX are able to do mapping and harvesting), are based on different technology
stacks (Java, PHP) and have separate relational databases. Proper maintenance and
development of such complex combination is challenging and hard to optimize.

The UIM component, responsible for Europeana ingestion workflow management, is
natural candidate for taking the lead role and becoming the ultimate tool for Europeana
team. It is already visible in the recent architectural changes, which are putting UIM as the
component responsible for managing of synchronization of data between ingestion and
publication environments.

The reconstruction of ingestion environment should utilize the architectural concept of
microservices4 and related architecture design patterns5. This concept was introduced to
allow splitting monolithic and inflexible systems to more modular and lightweight ones. It
also significantly supports deduplication of services functionality, as each core function
can be run as separate microservice, which can be reused by many tools. So
decomposition of best features of currently used tools into microservices can lead to
creation of much better ingestion platform than usage of few loosely connected bigger
tools. Another benefit is that each service can then be adapted and redeployed
separately, and can even have different technology stack (if justified), as long as
communication interfaces are agreed. Major challenges which have to be taken into
account in this context are: right level of services granularity, proper distribution and
monitoring of services, consistent error handling (when referenced microservice/s will be
down), consistent transaction handling in the cross-service context, shared storage or
other way of data synchronization and consistency between services.

The microservices approach should result in the future UIM being a central point
responsible for orchestration of all ingestion related operations. The Metadata and
Content Service provided by Europeana Cloud should be used as the shared storage
allowing UIM and all microservices to easily exchange and process data without the
necessity of copying it between different storage systems. Microservices responsible for
data processing (mapping, enrichments) should be implemented as plugins to Europeana
Cloud Data Processing Service, allowing to scale the processing operations easily.

Current object storage of Europeana, based on Mongo DB should be as a result replaced
with Europeana Cloud Metadata and Content Service. Depending on the directions of
development of Data Annotation Service, the graph storage of Europeana could be also
possibly replaced with Europeana Cloud functionality.

Direction 2: Integration of media harvesting system

The media harvesting subsystem which is now very loosely connected with the rest of
system should be as well integrated into the UIM+microservices environment. Separate
MongoDB which is now used as a storage of technical metadata should be replaced with
proper usage of EuropeanaC loud Metadata and Content Service and the media
harvesting and analysis process should be deployed within Data Processing Service to
have homogeneous processing environment.

4 http://martinfowler.com/articles/microservices.html
5 http://microservices.io/patterns/index.html

http://martinfowler.com/articles/microservices.html
http://microservices.io/patterns/index.html

D7.1: Strategic Development Plan, Architectural Planning

 9

The two steps described above are in fact very complex operation which will also result in
changes in the Europeana portal and API, at least in the part which use object storage, as it will
be using Metadata and Content Service instead.

Two more architectural planning directions presented below have more backend nature and are
not specifically connected to the nature of Europeana functionality. They are rather good
practices which appear often in complex distributed system and could be also introduced in
Europeana system to increase its flexibility, extensibility and security.

Direction 3: Introduction of shared messaging queue

Europeana system is a complex and distributed environment and in such systems very
common component is shared messaging queue. Such queue is used to send messages
about activities undertaken by specific component. The component which is doing some
activity is also sending a message to the queue and other components may (if they want)
receive this message and react to it. The communication is asynchronous – the sender is not
waiting for the receiver to confirm that the message was read – and receivers can be added
and removed in runtime. So in fact the sender does not have to be aware who will get the
message. Good scenario describing usefulness of the shared queue in the context of
Europeana is the following:

1. Harvesting microservice delivers new metadata record to shared storage (Metadata
and Content Service) and sends a “New record with id X” message about that fact to
the queue.

2. Enrichment microservice gets the message and reacts to it by doing some
enrichments on the new data record.

3. Later on, new microservice for media harvesting and analysis is added. This
microservice also begins to listen and react to “New record…” messages. This
microservice can be plugged in into the system without any additional modifications of
existing services (if they are already generating proper messages).

To implement this approach, not only a setup of shared messaging queue is required but also
each component of Europeana systems should be reviewed in the context of:

• the list of messages that this component should generate – messages which will be
useful already and may be useful in the future;

• the communication with other already existing components – if it can be transformed
from synchronous, based on direct calls, to asynchronous, based on messages.

Using queues for message passing and asynchronous communication in general is also very
good way to ensure scalability of the system and avoid bottlenecks. For example, in the
scenario above, if the enrichment microservice will be overloaded it will not block the
harvesting process. Instead, messages will be buffered in the queue until the time when they
can be processed. If more processing power will be needed, then more enrichment
microservices can be instantiated and connected to the same queue to start parallel
processing. With this approach and proper amount of resources even near real-time
processing performance can be achieved. Of course the key is the stability and performance
of the queueing system, but there are several systems like this (e.g. Apache Kafka) that
proved their reliability in several big data processing environments.

Direction 4: Introduction of centralized logging and auditing

Shared messaging system described above can be also utilized to introduce centralized
logging, which is very good way to achieve good overview of all components of complex and
distributed systems. Open source tools like Logstash, Ganglia and Kibana can be used to

D7.1: Strategic Development Plan, Architectural Planning

 10

aggregate, process and visualize log data. There are also possibilities to utilize machine
learning approaches to provide smart automated monitoring of such systems and create error
detection mechanisms which are even able to generate warnings before regular monitoring
alerts will be triggered.

Europeana portal and API can be also connected to the centralized logging. This should allow
to gather all usage data in one place and process it in order to provide analytical view on how
resources available in Europeana are accessed and what are the paths of users which are
exploring the rich content of Europeana.

D7.1: Strategic Development Plan, Architectural Planning

 11

4. Summary
Four directions of architectural planning described in this deliverable are indication of the most
important aspects of technological developments of Europeana system in the context of coming
months. The major challenge will be for sure the migration to Europeana Cloud which should be
connected with reconstruction and deep optimization of the ingestion environment. This process
should be divided into several steps:

• Identify all functionality that is needed in the ingestion process, on the path from
aggregation to production (including the media harvesting part).

• Decide which functionality can be extracted as microservices, which functionality can be
completely automated and which requires human interaction or supervision (which means
that user interface is necessary).

• Design workflows, data flows and interactions between microservices and the
coordination subsystem (“new UIM”).

• Plan which microservices can be extracted from existing tools and services and which
have to be rewritten from scratch, also in the context of functionality provided by
Europeana Cloud.

• Design interfaces (APIs) of microservices, ideally in a unified way6.
• Implement the coordination subsystem and microservices (on the basis of Europeana

Cloud where possible).
As the re-implementation of ingestion system will most probably take several months, it has to be
done in parallel with the operations of currently existing ingestion backend. The planning above
covers two first directions described in section 3. Direction 3, introduction of shared message
queue, should be done in the beginning of these works, so that all new components and
microservices can utilize it. Direction 4, centralized logging and auditing, can be also started “by
the way”, as it will be relatively easy to add logging via messaging during the major changes
described above.

6 E.g. http://more.locloud.eu/hackathon/index.php?op=vre_api

http://more.locloud.eu/hackathon/index.php?op=vre_api

	1. Introduction
	2. Current architecture overview
	3. Architectural planning
	Direction 1: Reconstruction of complex ingestion system
	Direction 2: Integration of media harvesting system
	Direction 3: Introduction of shared messaging queue
	Direction 4: Introduction of centralized logging and auditing

	4. Summary

